Examining the Superiority of Professional Football Teams with the Contribution of Expected Goal (xG) Value

  • Olcay Mulazimoglu Mugla Sitki Kocman University, Faculty of Sport Sciences, Turquia.
  • Erdi Tokul Match and Performance Analysts, Turquia.
  • Suleyman Can Mugla Sitki Kocman University, Faculty of Education Sciences, Turquia.
  • Ahmetcan Eyuboglu Mugla Sitki Kocman University, Faculty of Sport Sciences, Turquia.
Palavras-chave: Análise, Classificação final, Status da partida, Local, Sucesso

Resumo

A abreviatura de Gol esperado é xG nas estatísticas do futebol. O xG mede a qualidade de uma chance calculando a probabilidade de que ela seja marcada em uma determinada posição do campo durante uma determinada fase do jogo. O objetivo deste estudo foi avaliar a métrica xG em termos de variáveis contextuais, como situação das equipes na mesa final, situação da partida e local. As pontuações xG das equipes (n = 760) das 380 partidas da temporada 2021-2022 da Superliga Turca foram coletadas para este estudo. As variáveis contextuais indicaram o seguinte; o nível de sucesso, status de sucesso e vantagem das equipes. Assim, os grupos foram organizados da seguinte forma; a classificação da mesa final foi de cinco grupos (ou seja, quatro primeiros times, dois quatro times,…), o status da partida foi de três grupos (vitória, empate e derrota) e o local foi de dois grupos (casa, fora). Os resultados mostraram que as equipes com melhor classificação obtiveram xG mais altos do que as equipes com classificação inferior. As primeiras quatro e segundas quatro equipes foram significativamente superiores às quintas quatro equipes. As pontuações xG das equipes vencedoras foram significativamente maiores do que as do empate e das perdedoras. As equipes da casa também alcançaram uma pontuação xG significativamente maior do que as equipes visitantes. Os resultados sugerem que a métrica de gol esperado (xG) pode avaliar o sucesso das equipes.

Referências

-Akyildiz, Z.; Nobari, H.; Tomás González-Fernández, F.; Moreira Praça, G.; Sarmento, H.; Hikmet Guler, A.; Saka, K.; Clemente, F.M.; Figueiredo, A.J. Variations in the physical demands and technical performance of professional soccer teams over three consecutive seasons. Scientific Reports. Vol. 12. Num. 1. 2022. p. 2412. https://doi.org/10.1038/s41598-022-06365-7.

-Anzer, G.; Bauer, P. A goal scoring probability model for shots based on synchronized positional and event data in football (Soccer). Frontiers in Sports and Active Living. Num. 3. 2021. p. 624475. https://doi.org/10.3389/fspor.2021.624475.

-Armatas, V.; Yiannakos, A. Analysis and evaluation of goals scored in 2006 World Cup. Journal of Sport and Health Research. Vol. 2. Num. 2. 2010. p. 119-128. http://www.journalshr.com/index.php/issues/2010.

-Armatas, V.; Yiannakos, A.; Papadopoulou, S.; Skoufas, D. Evaluation of goals scored in top ranking soccer matches: Greek “Superleague” 2006-07. Serb J Sports Sci. Vol. 3. Num. 1. 2009. p. 39-43. www.sjss-sportsacademy.edu.rs.

-Biermann, C. Football hackers: The science and art of a data revolution (Kindle Edi). Blink Publishing. 2019.

-Castellano, J.; Casamichana, D.; Lago, C. The use of match statistics that discriminate between successful and unsuccessful soccer teams. Journal of Human Kinetics. Vol. 31. Num. 1. 2012. p. 139-147. https://doi.org/10.2478/V10078-012-0015-7.

-Decroos, T.; Davis, J. Interpretable prediction of goals in soccer. AAAI-20 Workshop on Artificial Intelligence in Team Sports. 2019. p. 1-17. http://statsbomb.com/wp-content/uploads/2019/10/ decroos-interpretability-statsbomb.pdf

-Dendir, S. When do soccer players peak? A note. Journal of Sports Analytics. Num. 2. 2016. p. 89-105. https://doi.org/10.3233/JSA-160021

-Evangelos, B.; Eleftherios, M.; Aris, S.; Ioannis, G.; Aristotelis, G.; Antonios, S. Offense and defense statistical indicators that determine the Greek Superleague teams placement on the table 2011 - 12. Journal of Physical Education and Sport. Vol. 13. Num. 3. 2013. p. 338-347. https://doi.org/10.7752/jpes.2013.03055

-Fernandez-Navarro, J.; Fradua, L.; Zubillaga, A.; Mcrobert, A.P. Evaluating the effectiveness of styles of play in elite soccer. International Journal of Sports Science & Coaching. Vol. 14. Num. 4. 2019. p. 514-527. https://doi.org/10.1177/1747954119855361

-Fernandez-Navarro, J.; Fradua, L.; Zubillaga, A.; McRobert, A.P. Influence of contextual variables on styles of play in soccer. International Journal of Performance Analysis in Sport. Vol. 18. Num. 3. 2018. p. 423-436. https://doi.org/10.1080/24748668.2018.1479925

-Grant, A.; Williams, A.M.; Reilly, T.; Borrie, A. An analysis of the successful and unsuccessful teams in the 1998 World Cup. Journal of sports sciences. Vol. 17. Num. 1. 1999. p. 827. https://doi.org//doi/10.1080/026404199365524

-Hao, L.; Khalid, M.N.A.; Iida, H. Analysis of the attractiveness of soccer: a game refinement model and the significance of “antagonistic rate.” Journal of Creative Industry and Sustainable Culture. Num. 1. 2022. p. 161-176. https://doi.org/10.32890/JCISC2022.1.10.

-Herberger, T.A.; Litke, C. The impact of big data and sports analytics on professional football: A systematic literature review. In Springer Proceedings in Business and Economics (pp. 147-171). Springer Science and Business Media B.V. 2021. https://doi.10.1007/978-3-030773403_12/COVER.

-Jamieson, J.P. The Home Field Advantage in Athletics: A Meta-Analysis. Journal of Applied Social Psychology. Vol. 40. Num. 7. 2010. p. 1819-1848. https://doi.org/10.1111/J.1559-1816.2010.00641.X

-Janković, A.; Leontijević, B.; Pašić, M.; Jelušić, V. Influence of certain tactical attacking patterns on the result achieved by the teams participants of the 2010 FIFA World Cup in South Africa. Fizička Kultura. Vol. 65. Num. 1. 2011. p. 34-45. https://doi.org/10.5937/FIZKUL1101034J

-Jones, P.D.; James, N.; Mellalieu, S.D. Possession as a performance indicator in soccer. International Journal of Performance Analysis in Sport. Vol. 4. Num. 1. 2004. p. 98–102. https://doi.org/10.1080/24748668.2004.11868295

-Kubayi, A. Analysis of goal scoring patterns in the 2018 FIFA World Cup. Journal of Human Kinetics. Vol. 71. Num. 1. 2020. p. 205-210. https://doi.org/10.2478/HUKIN-2019-0084

-Lago-Penas, C. The influence of match location, quality of opposition, and match status on possession strategies in professional association football. Journal of Sports Sciences. Vol. 27. Num. 13. 2009. p. 1463-1469. https://doi.org/10.1080/02640410903131681

-Lago-Penas, C.; Gomez, M.Á.; Pollard, R. Home advantage in elite soccer matches. A transient effect? International Journal of Performance Analysis in Sport. Vol. 17. Num. 1-2. 2017. p. 86–95. https://doi.org/10.1080/24748668.2017.1304024

-Lago-Penas, C.; Lago-Ballesteros, J.; Dellal, A.; Gómez, M. Game-related statistics that discriminated winning, drawing and losing teams from the Spanish Soccer League. Journal of Sports Science & Medicine. Vol. 9. Num. 2. 2010. p. 288. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761743/

-Lago-Penas, C.; Lago-Ballesteros, J.; Rey, E. Differences in performance indicators between winning and losing teams in the UEFA Champions League. Journal of Human Kinetics. Vol. 27. Num. 1. 2011. p. 135-146. https://doi.org/10.2478/v10078-011-0011-3

-Leite, W.S.S. Euro 2012: Analysis and evaluation of goals scored. International Journal of Sports Science. Vol. 3. Num. 4. 2013. p. 102-106. https://doi.org/10.5923/j.sports.20130304.02

-Liu, H.; Gomez, M.Á.; Lago-Peñas, C.; Sampaio, J. Match statistics related to winning in the group stage of 2014 Brazil FIFA World Cup. Journal of Sports Sciences. Vol. 33. 2015. p. 1205-1213. https://doi.org/10.1080/02640414.2015.1022578

-Liu, H.; Hopkins, W.; Gómez, M.A.; Molinuevo, J. S. Inter-operator reliability of live football match statistics from OPTA Sportsdata. International Journal of Performance Analysis in Sport. Vol. 13. Num. 3. 2017. p. 803-821. https://doi.org/10.1080/24748668.2013.11868690

-Michailidis, Y.; Michailidis, C.; Primpa, E. Analysis of goals scored in European Championship 2012. Journal of Human Sport and Exercise. Vol. 8. Num. 2. 2013. p. 367-375. https://doi.org/10.4100/JHSE.2012.82.05

-Mitrotasios, M.; Armatas, V. Analysis of goal scoring patterns in the 2012 European Football Championship. The Sport Journal. Vol. 24. 2014. p. 1-9. http://thesportjournal.org

-Mülazımoğlu, O.; Zengin, Y.E.; Kartoğlan, A. The Process between the Initiation of an Attack and Scoring Touch in the UEFA Champions League. Ambient Science, 07Sp (1). 2020. https://doi.org/10.21276/AMBI.2020.07.SP1.OA50

-Rathke, A. An examination of expected goals and shot efficiency in soccer. Journal of Human Sport and Exercise. Num. 12(Proc2). 2017. https://doi.org/10.14198/jhse.2017.12.proc2.05

-Ruan, L.; Ge, H.; Shen, Y.; Pu, Z.; Zong, S.; Cui, Y. (2022). Quantifying the effectiveness of defensive playing styles in the Chinese Football Super League. Frontiers in Psychology. Num. 13. 2022. p. 899199. https://doi.org/10.3389/fpsyg.2022.899199

-Taylor, J.; Mellalieu, S.; James, N.; Shearer, D. The influence of match location, quality of opposition, and match status on technical performance in professional association football. Journal of Sports Sciences. Vol. 26. Num. 9. 2008. p. 885-895. https://doi.org/10.1080/02640410701836887

-Tokul, E.; Mülazimoglu, O. Analyzing the process from the initiation of attack to goal scoring touch in the EURO 2016. Universal Journal of Educational Research. Vol. 6. Num. 12. 2018. p. 2738-2742. https://doi.org/10.13189/ujer.2018.061206

-Tureen, T.; Olthof, S. “Estimated player impact” (EPI): Quantifying the effects of individual players on football (soccer) actions using hierarchical statistical models. StatsBomb Conference 2022. 2022. p. 1-29. https://statsbomb.com.

-Vatavani, D. Upgrading expected goals. Stats Bomb. 2022. https://statsbomb.com/articles/soccer/ upgrading-expected-goals/

-Whitmore, J. What Are Expected Goals (xG)? Opta Analyst. 2021. https://theanalyst.com

-Yiannakos, A.; Armatas, V. Evaluation of the goal scoring patterns in European Championship in Portugal 2004. International Journal of Performance Analysis in Sport. Vol. 6. Num. 1. 2017. p. 178-188. https://doi.org/10.1080/24748668.2006.11868366.

Publicado
2024-04-24
Como Citar
Mulazimoglu, O., Tokul, E., Can, S., & Eyuboglu, A. (2024). Examining the Superiority of Professional Football Teams with the Contribution of Expected Goal (xG) Value. RBFF - Revista Brasileira De Futsal E Futebol, 16(64), 67-75. Recuperado de https://www.rbff.com.br/index.php/rbff/article/view/1391
Seção
Artigos Cientí­ficos - Original